66,711 research outputs found

    Collusion in the Indian Tea Industry in the Great Depression : An Analysis of Panel Data

    Get PDF
    This paper analyzes the effectiveness of the control schemes in the Indian tea industry during the Great Depression, whereby producers attempted to collude by reducing output. Analysis of data from a panel of plantations shows that collusion was effective. We suggest that the system of management of plantations by "managing agents" enhanced the degree of monopoly in the industry, thereby facilitating collusion. The social cohesiveness of expatriate business may have also contributed to the enforcement of collusion.

    Helicopter external noise prediction and correlation with flight test

    Get PDF
    Mathematical analysis procedures for predicting the main and tail rotor rotational and broadband noise are presented. The aerodynamic and acoustical data from Operational Loads Survey (OLS) flight program are used for validating the analysis and noise prediction methodology. For the long method of rotational noise prediction, the spanwise, chordwise, and azimuthwise airloading is used. In the short method, the airloads are assumed to be concentrated at a single spanwise station and for higher harmonics an airloading harmonic exponent of 2.0 is assumed. For the same flight condition, the predictions from long and short methods of rotational noise prediction are compared with the flight test results. The short method correlates as well or better than the long method

    Efficient replication of large volumes of data and maintaining data consistency by using P2P techniques in Desktop Grid

    Get PDF
    Desktop Grid is increasing in popularity because of relatively very low cost and good performance in institutions. Data-intensive applications require data management in scientific experiments conducted by researchers and scientists in Desktop Grid-based Distributed Computing Infrastructure (DCI). Some of these data-intensive applications deal with large volumes of data. Several solutions for data-intensive applications have been proposed for Desktop Grid (DG) but they are not efficient in handling large volumes of data. Data management in this environment deals with data access and integration, maintaining basic properties of databases, architecture for querying data, etc. Data in data-intensive applications has to be replicated in multiple nodes for improving data availability and reducing response time. Peer-to-Peer (P2P) is a well established technique for handling large volumes of data and is widely used on the internet. Its environment is similar to the environment of DG. The performance of existing P2P-based solution dealing with generic architecture for replicating large volumes of data is not efficient in DG-based DCI. Therefore, there is a need for a generic architecture for replicating large volumes of data efficiently by using P2P in BOINC based Desktop Grid. Present solutions for data-intensive applications mainly deal with read only data. New type of applications are emerging which deal large volumes of data and Read/Write of data. In emerging scientific experiments, some nodes of DG generate new snapshot of scientific data after regular intervals. This new snapshot of data is generated by updating some of the values of existing data fields. This updated data has to be synchronised in all DG nodes for maintaining data consistency. The performance of data management in DG can be improved by addressing efficient data replication and consistency. Therefore, there is need for algorithms which deal with data Read/Write consistency along with replication for large volumes of data in BOINC based Desktop Grid. The research is to identify efficient solutions for data replication in handling large volumes of data and maintaining Read/Write data consistency using Peer-to-Peer techniques in BOINC based Desktop Grid. This thesis presents the solutions that have been carried out to complete the research

    An Efficient Analytical Solution to Thwart DDoS Attacks in Public Domain

    Full text link
    In this paper, an analytical model for DDoS attacks detection is proposed, in which propagation of abrupt traffic changes inside public domain is monitored to detect a wide range of DDoS attacks. Although, various statistical measures can be used to construct profile of the traffic normally seen in the network to identify anomalies whenever traffic goes out of profile, we have selected volume and flow measure. Consideration of varying tolerance factors make proposed detection system scalable to the varying network conditions and attack loads in real time. NS-2 network simulator on Linux platform is used as simulation testbed. Simulation results show that our proposed solution gives a drastic improvement in terms of detection rate and false positive rate. However, the mammoth volume generated by DDoS attacks pose the biggest challenge in terms of memory and computational overheads as far as monitoring and analysis of traffic at single point connecting victim is concerned. To address this problem, a distributed cooperative technique is proposed that distributes memory and computational overheads to all edge routers for detecting a wide range of DDoS attacks at early stage.Comment: arXiv admin note: substantial text overlap with arXiv:1203.240

    A Relation Between Network Computation and Functional Index Coding Problems

    Full text link
    In contrast to the network coding problem wherein the sinks in a network demand subsets of the source messages, in a network computation problem the sinks demand functions of the source messages. Similarly, in the functional index coding problem, the side information and demands of the clients include disjoint sets of functions of the information messages held by the transmitter instead of disjoint subsets of the messages, as is the case in the conventional index coding problem. It is known that any network coding problem can be transformed into an index coding problem and vice versa. In this work, we establish a similar relationship between network computation problems and a class of functional index coding problems, viz., those in which only the demands of the clients include functions of messages. We show that any network computation problem can be converted into a functional index coding problem wherein some clients demand functions of messages and vice versa. We prove that a solution for a network computation problem exists if and only if a functional index code (of a specific length determined by the network computation problem) for a suitably constructed functional index coding problem exists. And, that a functional index coding problem admits a solution of a specified length if and only if a suitably constructed network computation problem admits a solution.Comment: 3 figures, 7 tables and 9 page
    corecore